Topics in the June 2012 Exam Paper for CHEM1001

Click on the links for resources on each topic.

2012-J-2:

- Molecules and lons
- Elements and Atoms
- Chemical Equations
- Stoichiometry

2012-J-3:

- Lewis Model of Bonding
- VSEPR

2012-J-4:

- Stoichiometry
- Elements and Atoms

2012-J-5:

- Atomic Energy Levels
- Lewis Model of Bonding
- VSEPR

2012-J-6:

Atomic Energy Levels

2012-J-7:

- Molecules and lons
- Stoichiometry
- Gas Laws

2012-J-8:

- Introduction to Electrochemistry
- Electrochemistry

2012-J-9:

- Thermochemistry
- First Law of Thermodynamics
- Gas Laws
- Electrochemistry
- Electrolytic Cells

2012-J-10:

• Chemical Equilibrium

2012-J-11:

• Types of Intermolecular Forces

2012-J-12:

• Thermochemistry

• First Law of Thermodynamics

2201(a)

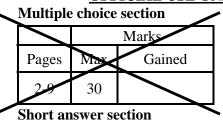
THE UNIVERSITY OF SYDNEY <u>FUNDAMENTALS OF CHEMISTRY 1A - CHEM1001</u>

FIRST SEMESTER EXAMINATION

CONFIDENTIAL

JUNE 2012

TIME ALLOWED: THREE HOURS


GIVE THE FOLLOWING INFORMATION IN BLOCK LETTERS

FAMILY		SID	
NAME	Ν	NUMBER	
OTHER	r	TABLE	
NAMES	Ν	NUMBER	

INSTRUCTIONS TO CANDIDATES

- All questions are to be attempted. There are 19 pages of examinable material.
- Complete the written section of the examination paper in <u>INK</u>.
- Read each question carefully. Report the appropriate answer and show all relevant working in the space provided.
- The total score for this paper is 100. The possible score per page is shown in the adjacent tables.
- Each new short answer question begins with a •.
- Only non-programmable, Universityapproved calculators may be used.
- Students are warned that credit may not be given, even for a correct answer, where there is insufficient evidence of the working required to obtain the solution.
- Numerical values required for any question, standard electrode reduction potentials, a Periodic Table and some useful formulas may be found on the separate data sheets.
- Pages 10, 12, 22 and 24 are for rough working only.

OFFICIAL USE ONLY

Marks							
Page	Max	Gained				Marker	
11	6						
13	8						
14	5						
15	9						
16	5						
17	6						
18	8						
19	8						
20	4						
21	5						
23	6						
Total	70						
Check Total							

Marks

2

• Complete the following table.

Name	Formula
calcium nitride	
carbon tetrabromide	
	Fe ₂ O ₃
sulfuric acid	

• Explain why relative atomic masses are not always close to an integer. For example, copper has a reported value of 63.54.

2

• Analysis of a black-coloured mineral called pitchblende returned the following percentage composition by weight: 84.80% uranium and 15.20% oxygen. What is the empirical formula of this compound?

2

• Complete the following table, including resonance structures where appropriate. The central atom is underlined.

Marks 6

	in is undernied.	
Species	Lewis structure(s)	Is the molecule polar?
<u>C</u> OCl ₂		
<u>C</u> S ₂		
<u>N</u> Br ₃		
<u>S</u> O ₂		

• What is resonance? Give at least one example.

2

Balance the following equation:		Ma
$NH_3(g) + 0$	$O_2(g) \rightarrow NO(g) + H_2O(l)$	
Calculate the mass of NH ₃ required	to produce 140. g of water.	
	Answer:	
Describe Putherford's experiment t	that showed atoms consisted of a concentrated	
	Make sure you discuss the observations and the	

• For a single atom, complete the following table. If more than one quantum number is possible, give all correct possibilities.

Marks 6

1 , 6	1			
Name	Maximum number of	Quantum numbers		
Iname	electrons contained	n	l	
1s orbital				
$2p_x$ orbital				
3d subshell				
2 nd shell				

• The σ -bonding in two plausible structures of ozone, O₃, is shown below. Complete each structure by adding electrons and/or π -bonds as appropriate.

3

Which of these geometries does ozone adopt? Give reasons for your answer.

Page Total:

Describe the different	nces between a 1 <i>s</i> atomic orbital and a 2 <i>s</i> atomic orbital.	Marks 2
		_
• Complete the follow	ing table.	3
Species	Full electron configuration	
gallium atom		
P ³⁻		
K ⁺		

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

• Depict the arrangement of water molecules around an ion. Explain why many ionic compounds are soluble in water.

Marks 3

3

• The equation for the detonation of nitroglycerine, $C_3H_5N_3O_9(1)$, is given below.

$$4C_3H_5N_3O_9(l) \ \rightarrow \ 6N_2(g) \ + \ 12CO_2(g) \ + \ 10H_2O(g) \ + \ O_2(g)$$

What mass of nitroglycerine is required to produce 720 L of product gases at 1800 °C and 1.00 atm? Assume all gases behave as ideal gases. Show all working.

Answer:

a A garvance cont has the following centratation: $D(s) + 2Zn^{2*}(aq) \rightarrow 2Zn(s) + D^{4*}(aq)$ $E^{\circ} = 0.18 \text{ V}$ Write the overall cell reaction in shorthand cell notation. Is the reaction spontaneous? Why? Which electrode is the anode? Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Draw, labelling all essential components, a cell diagram for this cell.	• A galvanic cell has the following cell reaction:	Marks
Write the overall cell reaction in shorthand cell notation. Is the reaction spontaneous? Why? Is the reaction spontaneous? Why? Which electrode is the anode? Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		8
Is the reaction spontaneous? Why? Is the reaction spontaneous? Why? Which electrode is the anode? Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Manswer:		
Which electrode is the anode? Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:	while the overall cell reaction in shorthand cell notation.	
Which electrode is the anode? Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		
Which electrode is the anode? Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		
Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:	Is the reaction spontaneous? Why?	
Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		
Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		
Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		
Write the equation for the half-reaction that occurs at the anode? What is the standard reduction potential of the D ⁴⁺ /D redox couple? Answer:		
What is the standard reduction potential of the D ⁴⁺ /D redox couple?	Which electrode is the anode?	
Answer:	Write the equation for the half-reaction that occurs at the anode?	
Answer:		
Answer:		
Answer:	What is the standard reduction potential of the D^{4+}/D redox couple?	
Draw, labelling all essential components, a cell diagram for this cell.	Answer:	
	Draw labelling all assential components, a call diagram for this call	
	Draw, labelling an essential components, a cen diagram for this cen.	

•	A 120.0 g piece of copper is heated to 80. water at 25.0 °C. What is the final temper The specific heat capacity of copper is 0.3 of water is $4.18 \text{ J g}^{-1} \text{ K}^{-1}$.		Marks 3
		Answer:	
•	H^+ is reduced to H_2 in an electrochemical when a current of 2 A is passed through the second		5
			-
		Γ	_
		Answer:	
	What amount of H_2 (in mol) is produced u	under these conditions?	
			_
		Answer:	_
	What volume would this gas occupy at 25	5 °C and 90 kPa?	
			_
		Answer:	

• Consider the following reaction.

$$SO_2(g) + NO_2(g) \iff SO_3(g) + NO(g)$$

An equilibrium mixture in a 1.00 L vessel was found to contain $[SO_2(g)] = 0.800$ M, $[NO_2(g)] = 0.100$ M, $[SO_3(g)] = 0.600$ M and [NO(g)] = 0.400 M. If the volume and temperature are kept constant, what amount of NO(g) needs to be added to the reaction vessel to give an equilibrium concentration of NO₂(g) of 0.300 M?

Answer:

THE REMAINDER OF THIS PAGE IS FOR ROUGH WORKING ONLY

Rank the f answer.	following compounds	in order of	increas	sing boiling	g point? Justify your	Mark 3
	CH ₃ CH ₂ OCH ₂ CH ₃ ,	CH ₃ OH,	CH ₄ ,	CH ₃ CH ₃ ,	CH ₃ CH ₂ OH	
Melting po Explain th		nalides inci	rease ir	the order	HCl < HBr < HF < HI.	2

	verage bond dissocia e for the following cl			to calculate the	e molar enthalpy	Marks 6		
	$N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$							
	Bond H−H N−H N≡N							
	$\Delta H / \text{kJ mol}^{-1}$	436	391	945				
			Answer:					
What	is the standard enthal	by of formation	on. $\Delta_{f}H^{\circ}$. of N	$H_3(g)$?				
The st	andard enthalpy of for rength of the N–N sir	ormation of hy	drazine, N ₂ H ₄		nol ⁻¹ . Calculate			
			Answer:					
	est why the N–N sing bonds. Hint: Draw i			n weaker than	the N–H and			

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

DATA SHEET

Physical constants Avogadro constant, $N_{\rm A} = 6.022 \times 10^{23} \text{ mol}^{-1}$ Faraday constant, $F = 96485 \text{ C mol}^{-1}$ Planck constant, $h = 6.626 \times 10^{-34} \text{ J s}$ Speed of light in vacuum, $c = 2.998 \times 10^8 \text{ m s}^{-1}$ Rydberg constant, $E_{\rm R} = 2.18 \times 10^{-18} \text{ J}$ Boltzmann constant, $k_{\rm B} = 1.381 \times 10^{-23} \text{ J K}^{-1}$ Permittivity of a vacuum, $\varepsilon_0 = 8.854 \times 10^{-12} \text{ C}^2 \text{ J}^{-1} \text{ m}^{-1}$ Gas constant, $R = 8.314 \text{ J K}^{-1} \text{ mol}^{-1}$ $= 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1}$ Charge of electron, $e = 1.602 \times 10^{-19} \text{ C}$ Mass of electron, $m_{\rm e} = 9.1094 \times 10^{-31} \text{ kg}$ Mass of proton, $m_{\rm p} = 1.6726 \times 10^{-27} \text{ kg}$

Properties of matter

Volume of 1 mole of ideal gas at 1 atm and 25 °C = 24.5 L Volume of 1 mole of ideal gas at 1 atm and 0 °C = 22.4 L Density of water at 298 K = 0.997 g cm⁻³

Conversion factors

1 atm = 760 mmHg = 101.3 kPa	$1 \text{ Ci} = 3.70 \times 10^{10} \text{ Bq}$
0 °C = 273 K	$1 \text{ Hz} = 1 \text{ s}^{-1}$
$1 L = 10^{-3} m^3$	1 tonne = 10^3 kg
$1 \text{ Å} = 10^{-10} \text{ m}$	$1 \mathbf{W} = 1 \mathbf{J} \mathbf{s}^{-1}$
$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$	

Deci	mal fract	ions	Deci	Decimal multiples						
Fraction	Prefix	Symbol	Multiple	Prefix	Symbol					
10^{-3}	milli	m	10 ³	kilo	k					
10^{-6}	micro	μ	10^{6}	mega	Μ					
10^{-9}	nano	n	10 ⁹	giga	G					
10^{-12}	pico	р								

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Standard Reduction Potentials, E°	
Reaction	E° / V
$\mathrm{Co}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Co}^{2+}(\mathrm{aq})$	+1.82
$Ce^{4+}(aq) + e^{-} \rightarrow Ce^{3+}(aq)$	+1.72
$MnO_4^{-}(aq) + 8H^+(aq) + 5e^- \rightarrow Mn^{2+}(aq) + 4H_2O$	+1.51
$\operatorname{Au}^{3+}(\operatorname{aq}) + 3e^{-} \rightarrow \operatorname{Au}(s)$	+1.50
$Cl_2 + 2e^- \rightarrow 2Cl^-(aq)$	+1.36
$O_2 + 4H^+(aq) + 4e^- \rightarrow 2H_2O$	+1.23
$Pt^{2+}(aq) + 2e^{-} \rightarrow Pt(s)$	+1.18
$MnO_2(s) ~+~ 4H^+(aq) ~+~ e^- \rightarrow ~Mn^{3+} ~+~ 2H_2O$	+0.96
$NO_3^-(aq) + 4H^+(aq) + 3e^- \rightarrow NO(g) + 2H_2O$	+0.96
$Pd^{2+}(aq) + 2e^{-} \rightarrow Pd(s)$	+0.92
$Ag^+(aq) + e^- \rightarrow Ag(s)$	+0.80
$\mathrm{Fe}^{3+}(\mathrm{aq}) + \mathrm{e}^{-} \rightarrow \mathrm{Fe}^{2+}(\mathrm{aq})$	+0.77
$Cu^+(aq) + e^- \rightarrow Cu(s)$	+0.53
$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s)$	+0.34
$\operatorname{BiO}^{+}(\operatorname{aq}) + 2\operatorname{H}^{+}(\operatorname{aq}) + 3\operatorname{e}^{-} \rightarrow \operatorname{Bi}(\operatorname{s}) + \operatorname{H}_2\operatorname{O}$	+0.32
$\operatorname{Sn}^{4+}(\operatorname{aq}) + 2e^{-} \rightarrow \operatorname{Sn}^{2+}(\operatorname{aq})$	+0.15
$\Delta \mathbf{H}^{+}(\mathbf{x}) + \mathbf{A}^{-}(\mathbf{x}) + \mathbf{H}^{-}(\mathbf{x})$	O(1 - 1 - f(1 + 1))
$2\mathrm{H}^{+}(\mathrm{aq}) + 2\mathrm{e}^{-} \rightarrow \mathrm{H}_{2}(\mathrm{g})$	0 (by definition)
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$	-0.04
	-
$Fe^{3+}(aq) + 3e^- \rightarrow Fe(s)$	-0.04
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$	-0.04 -0.13
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$	-0.04 -0.13 -0.14
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$	-0.04 -0.13 -0.14 -0.24
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$	-0.04 -0.13 -0.14 -0.24 -0.40
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$	-0.04 -0.13 -0.14 -0.24 -0.40 -0.44 -0.74 -0.76
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \end{array}$
$Fe^{3+}(aq) + 3e^{-} \rightarrow Fe(s)$ $Pb^{2+}(aq) + 2e^{-} \rightarrow Pb(s)$ $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$ $Ni^{2+}(aq) + 2e^{-} \rightarrow Ni(s)$ $Cd^{2+}(aq) + 2e^{-} \rightarrow Cd(s)$ $Fe^{2+}(aq) + 2e^{-} \rightarrow Fe(s)$ $Cr^{3+}(aq) + 3e^{-} \rightarrow Cr(s)$ $Zn^{2+}(aq) + 2e^{-} \rightarrow H_{2}(g) + 2OH^{-}(aq)$ $Cr^{2+}(aq) + 2e^{-} \rightarrow Cr(s)$ $Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$ $Sc^{3+}(aq) + 3e^{-} \rightarrow Sc(s)$ $Mg^{2+}(aq) + 2e^{-} \rightarrow Mg(s)$ $Na^{+}(aq) + e^{-} \rightarrow Na(s)$	$\begin{array}{c} -0.04 \\ -0.13 \\ -0.14 \\ -0.24 \\ -0.40 \\ -0.44 \\ -0.74 \\ -0.76 \\ -0.83 \\ -0.89 \\ -1.68 \\ -2.09 \\ -2.36 \\ -2.71 \end{array}$

CHEM1001 – FUNDAMENTALS OF CHEMISTRY 1A

Useful formulas							
Quantum Chemistry	Electrochemistry						
$E = h\nu = hc/\lambda$	$\Delta G^{\circ} = -nFE^{\circ}$						
$\lambda = h/mv$	Moles of $e^- = It/F$						
$E = -Z^2 E_{\rm R}(1/n^2)$	$E = E^{\circ} - (RT/nF) \times \ln Q$						
$\Delta x \cdot \Delta(mv) \ge h/4\pi$	$E^{\circ} = (RT/nF) \times \ln K$						
$q = 4\pi r^2 \times 5.67 \times 10^{-8} \times T^4$	$E = E^{\circ} - \frac{0.0592}{1000} \log Q \text{ (at 25 °C)}$						
$T \lambda = 2.898 \times 10^6 \text{ K nm}$	n						
Acids and Bases	Gas Laws						
$pH = -log[H^+]$	PV = nRT						
$pK_{w} = pH + pOH = 14.00$	$(P + n^2 a/V^2)(V - nb) = nRT$						
$pK_{\rm w} = pK_{\rm a} + pK_{\rm b} = 14.00$	$E_{\rm k} = \frac{1}{2}mv^2$						
$pH = pK_a + \log\{[A^-] / [HA]\}$							
Radioactivity	Kinetics						
$t_{1/2} = \ln 2/\lambda$	$t_{1/2} = \ln 2/k$						
$A = \lambda N$	$k = A e^{-Ea/RT}$						
$\ln(N_0/N_t) = \lambda t$	$\ln[\mathbf{A}] = \ln[\mathbf{A}]_0 - kt$						
14 C age = 8033 ln(A_0/A_t) years	$\ln \frac{k_2}{k_1} = \frac{E_a}{R} \left(\frac{1}{T_1} - \frac{1}{T_2} \right)$						
Colligative Properties & Solutions	Thermodynamics & Equilibrium						
$\Pi = cRT$	$\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$						
$P_{\text{solution}} = X_{\text{solvent}} \times P^{\circ}_{\text{solvent}}$	$\Delta G = \Delta G^{\circ} + RT \ln Q$						
c = kp	$\Delta G^{\circ} = -RT \ln K$						
$\Delta T_{\rm f} = K_{\rm f} m$	$\Delta_{\rm univ}S^{\rm o}=R\ln K$						
$\Delta T_{\rm b} = K_{\rm b} m$	$K_{\rm p} = K_{\rm c} \left(\frac{RT}{100}\right)^{\Delta n}$						
Miscellaneous	Mathematics						
$A = -\log \frac{I}{I_0}$	If $ax^2 + bx + c = 0$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$						
$A = \varepsilon c l$	$\ln x = 2.303 \log x$						
$E = -A \frac{e^2}{4\pi\epsilon_{\rm e} r} N_{\rm A}$	Area of circle = πr^2						
$-4\pi\varepsilon_0 r^{++}$	Surface area of sphere $= 4\pi r^2$						

Useful formulas

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
1 нудгоден Н 1.008		_															2 нешим Не 4.003
3 LITHIUM Li 6.941	4 Beryllium Be 9.012											5 вогом В 10.81	6 CARBON C 12.01	7 NITROGEN N 14.01	8 0xygen 0 16.00	9 fluorine F 19.00	10 _{меом} Ne 20.18
11 Na 22.99	12 MAGNESIUM Mg 24.31											13 ALUMINIU Al 26.98	M 14 SILICON Si	14.01 15 рноярновиз Р 30.97	10.00 16 sulfur S 32.07	17 CHLORINE CL 35.45	18 ARGON Ar 39.95
19 ротаssium К 39.10	20 CALCIUM Ca 40.08	21 scandium Sc 44.96	22 тталим Ті 47.88	23 vanadium V 50.94	24 снгомим Cr 52.00	25 manganese Mn 54.94	26 ^{IRON} Fe 55.85	27 совалт Со 58.93	28 Nickel Ni 58.69	29 ^{COPPER} Cu 63.55	30 zinc Zin 65.3	31 GALLIUM Ga	GERMANIUM GERMANIUM	33 ARSENIC AS 74.92	34 selenium Se 78.96	35 BROMINE Br 79.90	36 KRYPTON Kr 83.80
37 _{RUBIDIUM} Rb 85.47	38 strontium Sr 87.62	39 yttrium Y 88.91	40 zirconium Zr 91.22	41 Niobium Nb 92.91	42 molybdenum Mo 95.94	43 тесняетим Тс [98.91]	44 RUTHENIUM Ru 101.07	45 ^{кнодіим} Rh 102.91	46 palladium Pd 106.4	47 SILVER Ag 107.87	48 саринс Cd 112.4	In	50 ™ Sn 2 118.69	51 ANTIMONY Sb 121.75	52 TELLURIUM Te 127.60	53 iodine I 126.90	54 xenon Xe 131.30
55 CAESIUM Cs 132.91	56 ^{вакіим} Ва 137.34	57-71	72 нарыцм Нf 178.49	73 tantalum Ta 180.95	74 ^{TUNGSTEN} W 183.85	75 RHENIUM Re 186.2	76 озмим Os 190.2	77 ікібіим Ir 192.22	78 Platinum Pt 195.09	79 _{GOLD} Au 196.97	80 мекси Нд 200.5	Tl	Pb	83 ыямитн Ві 208.98	84 POLONIUM PO [210.0]	85 ASTATINE At [210.0]	86 RADON Rn [222.0]
87 FRANCIUM Fr [223.0]	88 RADIUM Ra [226.0]	89-10		105	106 зеавогсіим Sg [263]	10012 107 вонким Вh [264]	108 назятим Hs [265]	109 меттлегим Мt [268]	110 darmstadtium Ds [281]	111 ROENTGENIUN Rg [272]	112	ium		200000			
LANTHANC S	DID 5	anum A	58 сегим Се 40.12	59 praseodymum Pr 140.91	60 NEODYMIUM Nd 144.24	61 PROMETHIUM Pm [144.9]	62 samarium Sm 150.4	63 EUROPIUN EU 151.96	G	d r	65 гевіцм ГЬ 58.93	66 ^{dysprosium} Dy 162.50	67 ноіміим Но 164.93	68 еквии Ег 167.26	69 ^{тницим} Тт 168.93	70 ^{ytterbium} Yb 173.04	71 цитетим Lu 174.97
ACTINOIE	DS ACTI	9 NUM C	90 тновіим Th 232.04	91 PROTACTINIUM Pa [231.0]	92 uranium U 238.03	93 NEPTUNIUM Np [237.0]	94 PLUTONIUM Pu [239.1]	95 AMERICIU Am [243.1	M 90 CURIN	5 m ber n]	97 KELLIUM Bk 47.1]	98 californium Cf [252.1]	99 EINSTEINIUM Es [252.1]	100 _{FERMIUM} Fm [257.1]	101 мендеleviuм Мd [256.1]	102 Nobelium No [259.1]	103 LAWRENCIUM Lr [260.1]

PERIODIC TABLE OF THE ELEMENTS

2201(b)